Analysis and modeling of ELM stability in DIII-D experiments with OMFIT

BOUT++ workshop - LLNL

Orso Meneghini

P. Snyder, S. Smith, L. Lao, J. Candy, C. Holland, O. Izacard, T. Osborne, R. Prater, H. St John, A. Turnbull

Oak Ridge Associated Universities
General Atomics

Sept 5th 2013

Outline

- 1 Why OMFIT is a unique integrated modeling framework
- 2 Integrated analysis of edge stability experiments in DIII-D
- 3 More examples of OMFIT integrated analyses and modeling
- 4 Conclusions and future work

1

Outline

- 1 Why OMFIT is a unique integrated modeling framework
- 2 Integrated analysis of edge stability experiments in DIII-D
- 3 More examples of OMFIT integrated analyses and modeling
- 4 Conclusions and future work

1

One Modeling Framework for Integrated Tasks (OMFIT)

A framework for the every-day analysis and modeling needs of both theorists and experimentalist!

One Modeling Framework for Integrated Tasks (OMFIT)

a workflow manager

- Data "flows" through different physics components
- Not a transport solver... that is just another component

for shallow code integration

- Stand-alone codes share "small" quantities of data
- I/O of stand-alone codes is mostly done by files

6 following a BOTTOM-UP, grassroots approach:

- Framework provides the tools for creating, improving, integrating components
- Users decide what codes to couple and how they interact
- Sharing of modules and their improvements
 Grows depending on the most pressing interest of the community
 Example: encyclopedia vs. Wikipedia

OMFIT philosophy and design choices

Recognize and encourage reuse of existing work

- Use any file formats
- Integrate existing scripts/widgets/softwares

Ease the way of working...

- Interactive graphical environment
- High level API
- Quick visualization of data

...without limiting possibilities

- User-level scripting to drive workflow
- Freedom to organize data as necessary
- All output data / input parameters always accessible

From experimental data to data analysis and modeling

Integration with experimental databases

Create a cooperative environment

- Sharing of knowledge among users
- Open-source

Main idea: to treat files, scripts, experiment data, texts, plots, executable, ... as a uniform collection of objects

- Centralize data from different sources
- Store everything deemed relevant, with no a-priory decision of what is stored and how
- Read/write of relatively few scientific data <u>formats</u> makes interaction with many codes possible

Data is organized in a tree structure which provides unified data access (similar to a file-system or MDS+)

Unified data structure defines a memory space where tasks communication can dynamically occur

Top-level GUI to interactively manage the tree structure, execute and edit scripts and manipulate and visualize data

Easy to execute tasks remotely and in parallel with high level APIs

- Seamless execute codes and and manage files remotely
 - Let codes run codes where they already work!
 - Machine running OMFIT directs and stores data in OMFIT tree
- Parallel execution of the same task with different input parameters, on multiple remote machines
- Real-time monitoring of local / remote and serial / parallel tasks

Easy to create Graphical Users Interfaces (GUIs) with high level APIs

User GUIs speed-up routine analysis and hide many of the underlying complexities to inexperienced users

- GUIs are python scripts and are created by users themselves
- Quick and easy! For each GUI entry need to specify the OMFIT tree location associated with it
- GUIs can be nested to create comprehensive GUIs, while ensuring consistency

Directly access experimental data from the OMFIT tree

- Browse, search, plot and manipulate MDS+ data, SQL tables
- Creation of codes inputs: profiles, power, angles,...
- Validation: compare modeling results with experiments

Quickly visualize data in the OMFIT tree or create publication quality graphics with Python scripts

1D/2D arrays are (over)-plotted with the push of a button

- Inspect inputs/outputs of different analyses / codes / iterations / ...
- Plots are interactive and can be customized (à la MATLAB)

More sophisticated plots are scripted in Python

- Matplotlib library very similar to MATLAB and IDL plot commands
- Plotting scripts can be assigned to specific objects

Outline

- 1 Why OMFIT is a unique integrated modeling framework
- 2 Integrated analysis of edge stability experiments in DIII-D
- 3 More examples of OMFIT integrated analyses and modeling
- 4 Conclusions and future work

The Peeling-Ballooning model for edge stability and ELMs

- ELMs caused by intermediate $n~(\sim 3-30)$ MHD instabilities
- Both ∇J and ∇P driven, with complex inter-dependencies:
 - Steep pressure gradient

DRIVE high n "ballooning" instabilities

STABILIZE "peeling" modes by increasing good curvature

High bootstrap current

DRIVE low n "peeling" instabilities

STABILIZE "ballooning" modes by decreasing magnetic shear

 Limit-cycle around stability boundary can explain wide range of ELM phenomena observed in tokamaks

ELITE* code is the workhorse for DIII-D edge stability analysis

- ELITE is a 2D eigenvalue code, based on ideal MHD Generalization of ballooning theory:
 - 1 Incorporate surface terms which drive peeling modes
 - **2** Retain first two orders in 1/n stability (treats intermediate $n > \sim 5$)
- Several steps are required to obtain an accurate ELITE analysis:
 - 1 Start from plasma equilibrium and kinetic profiles
 - Special attention to the edge pressure and current!
 - 2 Parametric variations of the pedestal pressure and current
 - 3 Run ELITE for ∇P and ∇J variations and for multiple n

Kinetic equilibrium reconstructions are the first step for an accurate transport and stability analysis

Accuracy of equilibrium that can be reconstructed increases with availability of information:

For boundary and global parameters:

- Magnetics (Flux loops and magnetic probes)
 - + Plasma boundary, β_p , l_i and I_p

Full equilibrium reconstruction require:

- Magnetics + MSE
 - + q profile $\rightarrow J$ profile
- Magnetics + MSE + kinetic profiles
 - + Pressure profile and internal magnetic geometry

Physics models can also be used as constraints:

- Fast particles pressure
- From NBI codes (Eg. NUBEAM, ...)
- Current profile
 - OH and bootstrap from neoclassical codes or Sauter model
 - RF & NBI from codes (Eg. TORAY, GENRAY, NUBEAM, ...)

Workflow of a DIII-D kinetic EFIT reconstruction in OMFIT

- step 0 Run magnetics + boundary + MSE constrained EFIT
 - a Fit kinetic profiles in flux space (ZIPFIT, GAprofiles)
 - 1.b Find p_{NBI} and J_{BS} running the ONETWO transport code
 - Run magnetics + boundary + MSE + kinetic constrained EFIT
 - 1.d Run *NEO* to get accurate predictions of J_{boot} and E_r
 - 1.e Correct MSE data for Zeeman effect from E_r
 - 2...n Repeat .a .b .c.d .e with updated equilibrium

ELM-profile module in OMFIT allows accurate fitting of pedestal profiles as function of ELM cycle

- In ELM stability experiments, Thomson scattering resolution is increased by sweeping plasma past the viewing chords
- Separatrix location is tracked based on magnetics-only EFIT reconstruction
- Data is binned as a function of D_{α} light emission \rightarrow proxy for ELM cycle

ELM-profile module in OMFIT allows accurate fitting of pedestal profiles as function of ELM cycle

- In ELM stability experiments, Thomson scattering resolution is increased by sweeping plasma past the viewing chords
- Separatrix location is tracked based on magnetics-only EFIT reconstruction
- Data is binned as a function of D_{α} light emission \rightarrow proxy for ELM cycle

Getting accurate bootstrap current with NEO

- Sauter model accurate for most DIII-D cases
- In high collisionality cases, Sauter model can be off by as much as 40% from neoclassical calculations (e.g. from NEO)

Parametric independent variations of the pedestal pressure and current with VARYPED tool

Uses T. Osborne's VARYPED tool perform scan of ∇P and ∇J in the pedestal:

- constant stored energy
- constant total current
- fixed collisionality profile

Edge stability sensitivity analysis with ELITE \rightarrow ELM I H-mode (90-100% bin)

- Color represents growth rate of most unstable mode (numbered)
- Last ELM phase is at the limit of the PB stability

Edge stability sensitivity analysis with ELITE \rightarrow ELM I H-mode (60-70% bin)

- Color represents growth rate of most unstable mode (numbered)
- Last ELM phase is at the limit of the PB stability
- Earlier ELM phases are more and more stable

Edge stability sensitivity analysis with ELITE \rightarrow ELM I H-mode (90-100% bin & 60-70% bin)

- Color represents growth rate of most unstable mode (numbered)
- Last ELM phase is at the limit of the PB stability
- Earlier ELM phases are more and more stable
- Superposition between ELM phase scans shows good overlapping

Edge stability sensitivity analysis with ELITE \rightarrow RMP ELM suppressed H-mode (before RMP)

- Before RMP, ELMS are observed in the experiment
- 90-100% ELM phase profiles are at stability limit

Edge stability sensitivity analysis with ELITE \rightarrow RMP ELM suppressed H-mode (during RMP)

- After RMP, ELMS are suppressed in the experiment
- RMP profiles are in stable region

Outline

- 1 Why OMFIT is a unique integrated modeling framework
- 2 Integrated analysis of edge stability experiments in DIII-D
- 3 More examples of OMFIT integrated analyses and modeling
- 4 Conclusions and future work

OMFIT is routinely used to perform a wide range of integrated modeling studies and analyses

Equilibrium	Gyro-kinetic	Others
EFIT	GYRO	GENRAY
KineticEFIT	TGLF	TORBEAM
VaryPed	GKS	NUBEAM
Turning and	MHD	M3DC1
Transport	stability	NTV
ONETWO	PEST3	Mag. flutter
GCNMP	GATO	Exp. profiles
TGYRO		
CW-II		

- OMFIT provides an ever-increasing list of ever-improving modules
- In general it is easy to support new codes, especially if they use standard file formats like FORTRAN namelist or NetCDF
- Users can integrate modules to create arbitrarily complex workflows
 - multi-dimensional parametric scans
 - iteration loops
 - non-linear optimization schemes
 - .

Survey of ideal MHD stability at increased β_n with GATO

Pressure scanned by scaling of P' and ideal MHD stability evaluated for different toroidal mode numbers nand wall distances (conformal wall)

220 GATO simulations run 20 at a time in parallel on 3 different remote machines

Evaluation of whistler waves (also known as 'helicons') current drive efficiency and location with GENRAY

- DIII-D target discharge #122976 with $\beta_n = 3.9$ (high β needed for absorption)
- Automated scan of launched n_{\parallel} and poloidal angle θ of wave injection
- Target compares favorably (60~kA/MW) with respect to EC (16~kA/MW) and NBI (26~kA/MW)

Extension of kinetic EFIT workflow for steady-state predictive modeling with TGYRO

Substitute: kinetic profiles **fitting** \rightarrow kinetic profiles **prediction**

TGYRO efficiently solves the steady state transport equation:

$$\Gamma_{neo}(x) + \Gamma_{turb}(x) = \Gamma_{target}(x) = \int_0^x V'(r) S(r) dr$$

Neoclassical from NEO and turbulent from either TGLF or GYRO

Evolution of unstable tearing mode with BOUT++

- Preliminary integration of BOUT++ into OMFIT (runs on NERSC & GA workstations)
- BOUT++ Python tools easily embedded into OMFIT
- Can perform scans, optimization, interact with other modules

Example from O. Izacard model, run in OMFIT:

- Slab geometry
- Jensen equilibrium
- Gaussian initial condition
- BOUT++ growth rate compares well with analytic predictions

Outline

- 1 Why OMFIT is a unique integrated modeling framework
- 2 Integrated analysis of edge stability experiments in DIII-D
- 3 More examples of OMFIT integrated analyses and modeling
- 4 Conclusions and future work

Conclusion

OMFIT is a framework for the every-day analysis and modeling needs of both theorists and experimentalist!

- Tree data structure provides unifying way to easily exchange data among codes and execute them in complicated workflows
- Graphical environment allows interactive analyses and inspection of intermediate results
- Modular approach and collaborative environment enable code reuse, promoting robust software and accelerated development
- User-level GUIs hide underlying complexities and facilitate streamlined analyses
- Users retain full access to input/output files, Python scripting
- Powerful APIs allow remote codes execution, reuse of existing scripts and widgets (IDL, matlab, shell, ...), access experimental data, GUI

Tutorials and more at github.com/OMFIT/OMFITpublicData/wiki

Future work

Integration with BOUT++ and OMFIT for automation of routine analyses (e.g. ELM analysis on DIII-D):

- Collect experimental data
- Mesh generation: EFIT → CORSICA → BOUT++
- Edit → compile → execute → collect data
- GUI for editing common parameters
- Post-processing (synthetic diagnostics?) and data analysis

More upcoming upgrades, including:

- Management of batch queues on HPC systems
- Integration with EPED for self consistent BC in transport simulations
- Integration with **SWIM** project \rightarrow TORIC, AORSA, CQL3D, TLC, ...